Sains Malaysiana 54(8)(2025): 1957-1971

http://doi.org/10.17576/jsm-2025-5408-07

 

Biosensor DNA Elektrokimia Berasaskan Nanokomposit Silika-Emas untuk Penentuan Ultrasensitif E. coli Patogen dalam Sayuran dan Air Persekitaran

Electrochemical DNA Biosensor Based on Silica-Gold Nanocomposite for Ultrasensitive Quantitation of Pathogenic E. coli in Vegetable and Environmental Water

 

LING LING TAN1, DEDI FUTRA2,3,* & LEE YOOK HENG2

 

1Pusat Kajian Bencana Asia Tenggara (SEADPRI), Institut Alam Sekitar dan

Pembangunan (LESTARI), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2Jabatan Sains Kimia, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia,

43600 UKM Bangi, Selangor, Malaysia

3Department of Chemistry Education, Faculty of Education, Universitas Riau, Kampus Binawidya KM 12.5 Pekanbaru, 28131, Riau, Indonesia

 

Diserahkan: 27 Disember 2024/Diterima: 23 Jun 2025

 

Abstrak

Escherichia coli lazimnya digunakan sebagai organisma penunjuk untuk menilai kualiti air dan pencemaran patogen enterik di perairan. Mengesan bakteria najis, seperti E. coli O157:H7 yang mempunyai ciri virulensi yang akan menyebabkan kesan patogen pada manusia adalah lebih membimbangkan orang biasa. Di sini, biosensor DNA elektrokimia ultrasensitif berasaskan nanokomposit silika-emas (Si-Au) telah disediakan untuk penentuan khusus jujukan DNA E. coli dalam sampel sayuran segar dan air daripada pelbagai sumber, contohnya sungai, laut, paip dan air mineral. Elektrod pes karbon bercetak skrin (SPCE) telah diubahsuai dengan lapisan nanozarah emas (AuNPs) untuk menggalakkan pemindahan elektron secara langsung antara label oligonukleotida antrakuinona elektroaktif dan elektrod SPCE. Nanosfera silika terubah suai dengan kumpulan berfungsi amina (SiNPs) telah disintesis melalui teknik sonikasi satu langkah yang mudah dan dijerap secara fizikal pada SPCE terubah suai AuNPs untuk membentuk elektrod nanokomposit Si-Au (Si-Au-SPCE). Biosensor DNA elektrokimia terbangun mampu mengesan kuantiti DNA sasaran E. coli pada paras rendah dalam julat kepekatan 1.0×10-16-1.0×10-9 M cDNA dengan had pengesanan (LOD) pada 0.13 aM. LOD yang dilaporkan dalam kajian ini adalah sekurang-kurangnya 10 kali ganda lebih rendah daripada kebanyakan biosensor DNA elektrokimia yang dilaporkan dalam kajian lepas setakat ini. Kuantifikasi DNA E. coli hanya memerlukan kira-kira 30 minit dan biosensor DNA menunjukkan kestabilan operasi selama 2 bulan. Nanokomposit Si-Au boleh berfungsi sebagai bahan termaju yang berpotensi untuk biosensor DNA berprestasi tinggi seperti yang dibuktikan melalui kajian kuantitatif kepekatan DNA E. coli dalam sampel sayuran mentah dan air persekitaran dengan hampir 100% perolehan semula kepekatan cDNA E. coli yang ditambahkan dalam sampel.

Kata kunci: Air persekitaran; biosensor DNA elektrokimia; Escherichia coli; nanosfera silika; nanozarah emas

 

Abstract

Escherichia coli is commonly used as an indicator organism for assessing water quality and enteric pathogenic contamination in waters. Detecting fecal bacteria, such as E. coli O157:H7 that had acquired virulence characteristics, which would cause pathogenicity in humans is of more concern to the average people. Herein, an ultrasensitive electrochemical DNA biosensor based on silica-gold (Si-Au) nanocomposite was prepared for sequence-specific detection of E. coli DNA in fresh vegetable and water samples from various sources (river, marine, tap, and mineral waters). The screen-printed carbon paste electrode (SPCE) was modified with a layer of gold nanoparticles (AuNPs) to promote direct electron transfer between the electroactive anthraquinone oligonucleotide label and the SPCE electrode. Animated-silica nanospheres (SiNPs) were synthesized via a facile single-step sonication technique, and physically absorbed onto the AuNPs-modified SPCE to form Si-Au nanocomposite electrode (Si-Au-SPCE). The electrochemical DNA biosensor was capable of low levels of E. coli target DNA quantitation in the concentration range of 1.0×10-16-1.0×10-9 M cDNA, with a limit of detection (LOD) at 0.13 aM. The LOD reported in this work is at least 10 times better than many reported electrochemical DNA biosensors in the literature so far. The quantification of E. coli DNA requires only about 30 min and the DNA biosensor showed operational stability for 2 months. The Si-Au nanocomposite could serve as a promising material for high-performance DNA biosensor as proven through the quantitation of E. coli DNA concentration in raw vegetable and water samples with close to 100% recoveries of the spiked E. coli cDNA concentration.

Keywords: Electrochemical DNA biosensor; environmental waters; Escherichia coli; gold nanoparticles; silica nanospheres

 

RUJUKAN

Bae, S.W., Oh, J., Shin, I., Cho, M.S., Kim, Y., Kim, H. & Hong, J. 2010. Highly sensitive detection of DNA by electrogenerated chemiluminescence amplification using dendritic Ru(bpy)32+-doped silica nanoparticles. Analyst 135: 603-607. doi: https://doi.org/10.1039/B920998K

Bonten, M., Johnson, J.R., Biggelaar, A.H.J., Georgalis, L., Geurtsen, J., Palacios, P.I., Gravenstein, S., Verstraeten, T., Hermans, P. & Poolman, J.T. 2021. Epidemiology of Escherichia coli bacteremia: A systematic literature review. Clinical Infectious Diseases 72(7): 1211-1219. doi: 10.1093/cid/ciaa210

Braz, V.S., Melchior, K. & Moreira, C.G. 2020. Escherichia coli as a multifaceted pathogenic and versatile bacterium. Frontiers in Cellular and Infection Microbiology 10: 548492. https://doi.org/10.3389/fcimb.2020.548492

Dester, E., Kao, K. & Alocijia, E.C. 2022. Detection of unamplified E. coli O157 DNA extracted from large food samples using a gold nanoparticle colorimetric biosensor. Biosensors 12(5): 274. https://doi.org/10.3390/bios12050274

Du, Y., Guo, S., Dong, S. & Wang, E. 2011. An integrated sensing system for detection of DNA using new parallel-motif DNA triplex system and grapheme mesoporous silica gold nanoparticle hybrids. Biomaterials 32: 8584-8592. https://doi.org/10.1016/j.biomaterials.2011.07.091

Eka, S., Lee, Y.H., Musa, A., Tan, L.L., Nazaruddin, N., Khairi, S., Chew, P.C. & Muhammad, I. 2022. Electrochemical DNA biosensor based on mercaptopropionic acid-capped ZnS quantum dots for determination of the gender of arowana fish. Biosensors 12(8): 650. https://doi.org/10.3390/bios12080650

El-Moghazy, A.Y., Wisuthiphaet, N., Yang, X., Sun, G. & Nitin, N. 2022. Electrochemical biosensor based on genetically engineered bacteriophage T7 for rapid detection of Escherichia coli on fresh produce. Food Control 135: 108811. https://doi.org/10.1016/j.foodcont.2022.108811

Gambushe, S.M., Zishiri, O.T. & Zowalaty, M.E.E. 2022. Review of Escherichia coli O157:H7 prevalence, pathogenicity, heavy metal and antimicrobial resistance, African perspective.
Infection and Drug Resistance 15: 4645-4673. doi: 10.2147/IDR.S365269

Garrido, A., Chapela, M., Román, B., Fajardo, P., Vieites, J.M. & Cabado, A.G. 2013. In-house validation of a multiplex real-time PCR method for simultaneous detection of Salmonella spp., Escherichia coli O157 and Listeria monocytogenes.
International Journal of Food Microbiology 164(1): 92-98. https://doi.org/10.1016/j.ijfoodmicro.2013.03.024

Geng, P., Zhang, X., Teng, Y., Fu, Y., Xu, L., Xu, M., Jin, L. & Zhang, W. 2011. A DNA sequence-specific electrochemical biosensor based on alginic acid-coated cobalt magnetic beads for the detection of E. coli. Biosensors and Bioelectronics26: 3325-3330. doi: 10.1016/j.bios.2011.01.007

Guo, Z., Yang, F., Zhang, L. & Zheng, X. 2013. Electrogenerated chemiluminescence energy transfer for the label-free detection of DNA. Sensors & Actuators B: Chemical 177: 316-321. https://doi.org/10.1016/j.snb.2012.10.141

Jiang, W.L., Shan, W.Q., Sheng, W.C., Ying, H.Z., Jian, J. & Ping, W. 2008. The Escherichia coli O157:H7 DNA detection on a gold nanoparticle-enhanced piezoelectric biosensor. Chinese Science Bulletin 53: 1175-1184. doi:10.1007/s11434-007-0529-x

Li, K., Lai, Y., Zhang, W. & Jin, L. 2011. Fe2O3@Au core/shell nanoparticle-based electrochemical DNA biosensor for Escherichia coli detection. Talanta 84: 607-613. doi: 10.1016/j.talanta.2010.12.042

Li, M., Yang, H., Ma, C., Zhang, Y., Ge, S., Yu, J. & Yan, M. 2014. A sensitive signal-off aptasensor for adenosine triphosphatebased on the quenching of Ru(bpy)32+-doped silica nanoparticles electrochemiluminescence by ferrocene. Sensors & Actuators B: Chemical 191: 377-383. https://doi.org/10.1016/j.snb.2013.10.020

Li, Y., Deng, L., Deng, C., Nie, Z., Yang, M. & Si, S. 2012. Simple and sensitive aptasensor based on quantum dot-coated silica nanospheres and the gold screen-printed electrode. Talanta 99: 637-642. https://doi.org/10.1016/j.talanta.2012.06.054

Lin, X., Mei, Y., He, C., Luo, Y., Yang, M., Kuang, Y., Ma, X., Zhang, H. & Huang, Q. 2021. Electrochemical biosensing interface based on carbon dots-Fe3O4 nanomaterial for the determination of Escherichia coli O157:H7. Frontiers in Chemistry 9: 2021. https://doi.org/10.3389/fchem.2021.769648

Lu, Z. & Breidt, F. 2015. Escherichia coli O157:H7 bacteriophage 241 isolated from an industrial cucumber fermentation at high acidity and salinity. Frontiers in Biology 6: 67. doi: 10.3389/fmicb.2015.00067

Mahirah, T., Tan, L.L., Nurul Huda, A.K., Goh, C.T., Lee, Y.H. & Bahariah, K. 2020. Reflectance aptasensor based on metal salphen label for rapid and facile determination of insulin. Talanta 207: 120321. https://doi.org/10.1016/j.talanta.2019.120321

Mao, X., Yang, L., Su, X. & Li, Y. 2006. A nanoparticle amplification based quartz crystal microbalance DNA sensor for detection of Escherichia coli O157:H7. Biosensors and Bioelectronics 21: 1178-1185. https://doi.org/10.1016/j.bios.2005.04.021

Nguyen, S.H., Vu, P.L.T. & Tran, M.T. 2023. Absorbance biosensors-based hybrid MoS2 nanosheets for Escherichia coli detection. Scientific Reports 13: 10235. https://doi.org/10.1038/s41598-023-37395-4

Ormsby, M.J., White, H.L., Metcalf, R., Oliver, D.M. & Quilliam, R.S. 2023. Clinically important E. coli strains can persist, and retain their pathogenicity, on environmental plastic and fabric waste. Environmental Pollution 326: 121466. https://doi.org/10.1016/j.envpol.2023.121466

Osińska, A., Korzeniewska, E., Korzeniowska-Kowal, A., Wzorek, A., Harnisz, M., Jachimowicz, P., Buta-Hubeny, M. & Zieliński, W. 2023. The challenges in the identification of Escherichia coli from environmental samples and their genetic characterization. Environmental Science and Pollution Research 30: 11572-11583. https://doi.org/10.1007/s11356-022-22870-8

Pandey, C.M., Singh, R., Sumana, G., Pandey, M.K. & Malhotra, B.D. 2011. Electrochemical genosensor based on modified octadecanethiol self-assembled monolayer for Escherichia coli detection. Sensors & Actuators B: Chemical 151: 333-340. https://doi.org/10.1016/j.snb.2010.07.046

Petersen, F. & Hubbart, J.A. 2020. Physical factors impacting the survival and occurrence of Escherichia coli in secondary habitats. Water 12(6): 1796. https://doi.org/10.3390/w12061796

Rahimi, E., Momtaz, H., Anari, M.M.H., Alimoradi, M., Momeni, M. & Riahi, M. 2012. Isolation and genomic characterization of Escherichia coli O157:NM and Escherichia coli O157:H7 in minced meat and some traditional dairy products in Iran. African Journal of Biotechnology 9: 2328-2332. doi: 10.5897/AJB11.2167

Raja Zaidatul Akhmar, R.J., Tan, L.L., Chong, K.F. & Lee, Y.H. 2020. An electrochemical DNA biosensor from graphene decorated with graphitic nanospheres. Nanotechnology 31: 485501. https://doi.org/10.1088/1361-6528/abab2e

Razmi, N., Hasanzadeh, M., Willander, M. & Nur, O. 2020. Recent progress on the electrochemical biosensing of Escherichia coli O157:H7: Material and methods overview. Biosensors 10(5): 54. doi: 10.3390/bios10050054

Riva, F., Riva, V., Eckert, E.M., Colinas, N., Cesare, A.D., Borin, S., Mapelli, F. & Crotti, E. 2020 An environmental Escherichia coli strain is naturally competent to acquire exogenous DNA. Frontiers in Microbiology 11: 574301. doi: 10.3389/fmicb.2020.574301

Stokes, D.L., Griffin, G.D. & Vo-Dinh, T. 2001. Detection of E. coli using a microfluidics-based antibody biochip detection system. Fresenius' Journal of Analytical Chemistry 369: 295-301. doi: 10.1007/s002160000660

Tang, J., Tang, D.P., Su, B.L., Li, Q.F., Qiu, B. & Chen, G.N. 2011. Nanosilver-penetrated polyion graphene complex membrane for mediator-free amperometric immunoassay of alpha-fetoprotein using nanosilver-coated silica nanoparticles. Electrochimica Acta 56: 3773-3780. https://doi.org/10.1016/j.electacta.2011.02.059

Zheng, D., Zhang, R., Chen, J., Feng, Z. & Lin, S. 2024. A highly sensitivity electrochemistry biosensor for E. coli DNA detection based on hollow and porous dCuO@rGO composite. Inorganic Chemistry Communications 166: 112621. https://doi.org/10.1016/j.inoche.2024.112621

 

*Pengarang untuk surat-menyurat; email: dedifutra@lecturer.unri.ac.id

 

 

 

 

 

 

 

 

           

sebelumnya